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Abstract. I use empirical processes to study how the shadow prices of a linear program 
that allocates an endowment of nβ ∈Rm resources to n customers behave as n→∞. I show 
the shadow prices (i) adhere to a concentration of measure, (ii) converge to a multivariate 
normal under central-limit-theorem scaling, and (iii) have a variance that decreases like 
Θ(1=n). I use these results to prove that the expected regret in an online linear program is 
Θ(log n), both when the customer variable distribution is known upfront and must be learned 
on the fly. This result tightens the sharpest known upper bound from O(log n log log n) to 
O(log n) , and it extends the Ω(log n) lower bound known for single-dimensional problems to 
the multidimensional setting. I illustrate my new techniques with a simple analysis of a multi-
secretary problem.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.0036. 

Keywords: online linear program • multisecretary problem • network revenue management • dual convergence • regret bounds •
empirical process • dual convergence

1. Introduction
Caley (1875) introduced the secretary problem in the 
nineteenth century. The problem is to hire a secretary 
from n applicants that you interview sequentially. 
However, there’s a hitch: Once you interview someone, 
you must decide whether to hire them before inter-
viewing the next candidate. Therefore, you face an opti-
mal stopping problem, with the objective being to 
maximize the expected capability of the secretary you 
hire or, equivalently, to minimize the expectation of 
your regret, the capability difference between the most 
competent applicant and the one you hire.

Arlotto and Gurvich (2019) studied the multisecretary 
problem, which is the same as the previous problem 
except with nβ�posts to fill, for some β ∈ [0, 1]. In this 
version of the problem, your regret is the expected 
capability difference between the nβ�most capable 
applicants and the nβ�applicants you hire. Arlotto and 
Gurvich made a striking discovery: If secretary valua-
tions are independent and identically distributed (i.i.d.) 
random variables with finite support, {v1, : : : , vk}, then 
your expected regret is uniformly bounded across n ∈
N and β ∈ [0, 1].

In Section 3, I study the multisecretary problem with 
secretary valuations drawn from the continuum [0, 1], 
rather than the finite set, {v1, : : : , vk}. Specifically, I 
show that the expected regret lies between (β=8)(1�
β=8)(log(n)=2� log(6)) and (log(n+ 1) + 7)=8 for all n ≥

220β�8 and β ∈ [0, 1=2] when valuations are i.i.d. uni-
form random variables, and I derive mirror-image 
bounds for β ∈ [1=2, 1].1 Furthermore, I show that the 
most obvious heuristic satisfies the upper regret bound.

In Section 4, I extend this Θ(log n) regret rate to the 
more general online linear programming (OLP) prob-
lem of Li and Ye (2022). In this problem, you start with 
inventory vector nβ ∈Rm

+ , and you exchange inventory 
at ∈Rm

+ for utility ut ≥ 0 if you fulfill the period t custo-
mer’s demand. Since none of your stocks can become 
negative, you must carefully husband each of your m 
resources. However, doing so is difficult, as you have 
no foreknowledge of the nature of demand; instead, 
you must learn the demand distribution the old- 
fashioned way—by serving customers.

The engine underlying my analysis of the online lin-
ear program is a set of shadow price convergence 
results I develop in Section 4.2. Li and Ye (2022, p. 
2952) lamented that “there is still a lack of theoretical 
understanding of the properties of the dual optimal 
solutions,” so I begin by characterizing their limiting 
behavior. I show that an online linear program’s 
shadow prices (i) conform to a concentration of 
measure, (ii) converge to a multivariate normal under 
central-limit-theorem-like scaling, and (iii) have a 
covariance matrix whose elements fall like Θ(1=t). I 
derive these results by hemming in the shadow prices 
with empirical processes.
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2. Related Works
2.1. Primary Antecedents
The online linear program I study in Section 4 is a mul-
tidimensional extension of the “zero-one knapsack 
problem” of Lueker (1998), in which you successively 
decide whether to add objects with random valuations 
and volumes to your backpack. Lueker proves that the 
expected regret grows like Θ(log n) under the optimal 
policy, provided that the value-to-volume ratio distri-
bution is sufficiently continuous. He establishes this 
bound with a proof unlike any other I have found in 
the literature. Specifically, he constructs lower and 
upper envelopes across the entire surface of the offline 
and online value functions. The induction required to 
create these bounds is painstaking because he has to 
weaken them just so as the inventory level departs the 
initial resource endowment. Extending Lueker’s value- 
function-bounding approach to higher dimensions 
would have been difficult, so I tackled the multire-
source version of his problem with the compensated cou-
pling scheme of Vera and Banerjee (2019). Rather than 
construct multidimensional functional envelopes, this 
more modern approach adds up the myopic regret 
incurred over the inventory level’s random walk.

Lueker’s specification generalizes the continuous- 
valuation multisecretary model I study in Section 3, but 
it does not generalize the finite-valuation multisecre-
tary model that Arlotto and Gurvich (2019) study. 
Indeed, Arlotto and Gurvich show that they can 
decrease the regret rate from Θ(log n) to O(1) by repla-
cing Lueker’s continuous-support secretary valuation dis-
tribution with an analogous finite-support distribution.

The mirror image of the multisecretary model is the 
stochastic knapsack problem of Arlotto and Xie (2020): 
The former has random valuations and fixed capacity 
consumption, and the latter has fixed valuations and 
random capacity consumption. Arlotto and Xie’s 
model does not fit under the framework of Lueker 
(1998) because it permits an unrestricted knapsack 
capacity—Whereas Lueker make the backpack volume 
scale linearly with n, Arlotto and Xie set it to a free 
model parameter. They use this additional degree of 
freedom to show that Lueker’s O(log n) upper regret 
bound holds universally across initial backpack capaci-
ties. However, Arlotto and Xie (2020, p. 190) do not 
develop a corresponding lower bound since “it is well 
known that the optimal policy often lacks desirable 
structural properties, so proving [this lower bound] is 
unlikely to be easy.”

Jasin (2014) extends the O(log n) upper regret bound 
to the multivariate setting. However, Jasin only sup-
ports a finite number of consumption bundles, as he 
considers the network revenue management problem 
in which you price a set number of products (e.g., flight 
itineraries), each of which comprises a set number of 
resources (e.g., flight legs).

Li and Ye (2022) relax the finite-product assumption, 
allowing a given customer’s resource consumption to 
be any number in a bounded region of Rm. More 
importantly, they are the first to incorporate an 
unknown demand distribution. Specifically, they show 
that the expected regret is at most O(log n log log n)
when the agent starts without knowing the nature of 
demand. However, Li and Ye (2022) do not provide a 
corresponding lower regret bound, so when you com-
pare their O(log n log log n) bound with the prior 
Θ(log n) results, you cannot help but wonder: Is reve-
nue management with and without online learning in 
the same class of difficulty?

I show that they are. Specifically, I establish that the 
regret is O(log n) when the demand distribution is 
unknown and is Ω(log n)when it is known—i.e., that it 
is Θ(log n), both with and without demand distribution 
foreknowledge. Removing the log log n fudge factor 
from Li and Ye’s upper bound requires (i) more sharply 
characterizing the limiting behavior of the shadow 
prices and (ii) more tightly controlling the inventory 
process. Whereas Li and Ye show that the magnitude 
of the period-t shadow price covariance matrix is 
O((log log t)=t), I show that it is Θ(1=t). Also, whereas 
they constrain inventories for all but the last 
O(log n log log n) periods, I constrain them for all but 
the last O(1) periods. New methodological innovations 
underpin both improvements.

First, I sharpen the shadow price asymptotics by 
applying empirical process techniques to the subgradi-
ent of the dual linear program. Casting this subgradient 
as an empirical process enables me to create shadow 
price convergence results that hold uniformly across 
inventory levels. This, in turn, allows me to overcome 
the hopeless entanglement between the current inven-
tory level and the current shadow price estimate.

Second, I create new techniques to constrain the 
inventory level’s random walk. For the upper bound 
with a known demand distribution, I control the pro-
cess with a standard martingale concentration inequal-
ity. For the upper bound with an unknown demand 
distribution, I split the process into martingale and drift 
parts. I then apply the martingale concentration 
inequality to the former and inductively bound the lat-
ter, showing that the inventory level being “in control” 
up until period t + 1 implies that the period (t+ 1)
shadow price is “in control,” which in turn means that 
the period t inventory level is “in control.” (This induc-
tion would not have been possible without the empiri-
cal process’ uniform bounds.) Finally, for the lower 
bound, I regulate the probability of the inventory levels 
spiraling out of control with the cost of splitting the 
offline linear program into two separate linear pro-
grams. For example, suppose you have 1,000 applicants 
for 100 secretarial positions and can interview all the 
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applicants upfront; now, suppose I told you that you 
can only hire 10 of the last 500 candidates. This addi-
tional constraint will substantially decrease the value of 
your hires, with high probability. Your regret condi-
tional on having fewer than 10 open positions with 500 
remaining applicants is at least as large as the cost 
imposed by this offline constraint. Hence, the probabil-
ity of having such a low inventory level must be suffi-
ciently small, or the optimal policy would violate the 
O(log n) regret upper bound.

2.2. Contemporaneous Developments
I will now discuss the noteworthy advancements that 
emerged since I first circulated my results. First, Balseiro 
et al. (2023, p. 1) produced an insightful and comprehen-
sive survey article that organizes models corresponding 
to “dynamic pricing with capacity constraints, dynamic 
bidding with budgets, network revenue management, 
online matching, and order fulfillment” under a unified 
umbrella, “dynamic resource-constrained reward col-
lection (DRC2) problems.” The DRC2 framework is sim-
ilar to the “online resource allocation” framework of 
Vera et al. (2019), except it can accommodate an infinite 
number of customer types. Balseiro et al. (2023, p. 8) 
explain that their class of problems is especially amena-
ble to the “certainty-equivalent principle: replace quanti-
ties by their expected values and take the best actions 
given the current history.” Indeed, this is how I bound 
the online linear program’s regret, although I learned 
the technique from Li and Ye (2022).

Next, Jiang and Zhang (2020) extend the model of 
Arlotto and Xie (2020) to allow multiple servers. Specifi-
cally, they suppose that you must allocate each customer 
to one of m servers. They provide an O(log n) upper 
bound, but like Li and Ye (2022) and Arlotto and Xie 
(2020), do not provide a corresponding lower bound. 
Neither Jiang and Zhang’s multiserver problem nor Li 
and Ye’s OLP problem (which I study) generalize the 
other. Jiang and Zhang’s framework incorporates an 
additional decision—which server to route a customer 
to—but Li and Ye’s framework incorporates online learn-
ing and permits a richer set of restrictions—constraining 
sales with a general linear program. Moreover, Jiang and 
Zhang do not make the initial resource endowment scale 
linear with n, as Li and Ye (2022) and I do.

Wang and Wang (2022) establish an Ω(log n) gap 
between the expected online value and the fluid 
approximation value (as opposed to the expected off-
line value) in the network revenue management prob-
lem of Jasin (2014). However, they only establish this 
result for the one-dimensional version of the problem. 
For the multidimensional version, they show that the 
optimal policy yields only O(1) more expected value 
than the policy Jasin used.

Besbes et al. (2023) point out that the multisecretary 
problem’s O(log n) regret may not hold if the probabil-
ity density function is near zero near the acceptance- 
rejection threshold. Akshit Kumar explained it to me 
like this: If you have n applicants for nβ�open positions, 
then the marginal applicant would have a valuation of 
F�1(1� β+Ωp(

ffiffiffi
n
√
)), where F is the utility cumulative 

distribution function. Now, if the utility probability 
density function equals f (u) � |u� u∗ | in a neighbor-
hood of u∗ ≡ F�1(1� β), then we would have F(u) �
1� β+ sign(u� u∗)(u� u∗)2=2 and hence F�1(q) � u∗ +
sign(q� 1+ β)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 |q� 1+ β |

p
. In this case, the expected 

myopic regret would exceed 1=n because, rather than 
the usual n�1=2 tolerance, we could now only discern 
the marginal man’s utility to within a n�1=4 tolerance: 
F�1(1� β+Ωp(

ffiffiffi
n
√
)) � u∗ + sign(Ωp(

ffiffiffi
n
√
))

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 |Ωp(
ffiffiffi
n
√
)|

q

�

u∗ +Ωp(n�1=4). To avoid these low-density regions, 
Besbes et al. create a version of the certainty-equivalent 
principle of Balseiro et al. (2023) that is “conservative 
with respect to gaps.” Their algorithm steers the inven-
tory random walk away from regions with high 
expected myopic regret.

Finally, Jiang et al. (2024) independently developed 
an O(1=n) bound for the shadow price variance. They 
combine this dual convergence result with a technique 
that’s similar in spirit to Besbes et al.’s “conservative 
with respect to gaps” to establish an O(log2 n) regret 
bound for the network revenue management problem 
without imposing a nondegenerate fluid limit. In con-
trast, previous models have assumed the fluid approxi-
mation’s constraints bind with pressure or are slack, 
with additional leeway. However, assuming extra wig-
gle room in the fluid model is unreasonable as it implies 
that some buffer stocks scale linearly with demand, which 
is a way over investment since safety stocks ought to 
scale with the square root of sales.

3. Multisecretary Problem
I will begin with the simple multisecretary problem to 
demonstrate my regret-bounding approach. Lueker 
(1998) has already established that this model’s regret 
scales like Θ(log n), but I will provide a far simpler proof, 
and my bounds will not have any hidden constants.

3.1. Setup
You have n ∈N applicants for nβ ∈N positions, where 
β ∈ [0, 1=2]. (It suffices to consider β ∈ [0, 1=2], because 
the expected regret with nβ�initial open slots equals 
that with n(1� β) initial open slots.2) You interview the 
candidates sequentially, starting with the nth applicant 
and ending with the first applicant, so that the period 
number corresponds with the size of the remaining 
candidate pool, with period t � 1 succeeding period t. 
Interviewing the period t applicant reveals the utility 
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you would get from hiring them, ut, a standard uniform 
random variable independent of the other candidates’ 
utilities. After interviewing this candidate, you must 
hire them on the spot or reject them for good. You seek 
to maximize the expected total utility from your hires. 
Characterizing this utility will take a few steps.

First, let vb
t denote the utility you receive starting 

from period t with tb ∈N open positions. The expecta-
tion of this variable satisfies the following Bellman 
equations:

E(vb
t ) ≡ E max

xt∈{0,1}
xtut +E(vψ

b
t (xt)

t�1 ) s:t: xt ≤ tb
� �

,

E(vb
0) ≡ 0,

and ψb
t (a) ≡

(tb� a)=(t� 1) t > 1,
0 t � 1:

�

I will explain the logic underlying these equations after 
line 1. However, the ψb

t function maps the fraction of 
applicants you can hire from period t onward, b, and 
your period t hiring decision, xt, to the fraction of appli-
cants you can hire from period (t� 1) onward. For 
example, if the period t superscript is b and you hire the 
period t applicant—that is, set xt � 1—then the period 
(t� 1) superscript is tb� 1|fflffl{zfflffl}

positions left

= (t� 1)
|fflfflffl{zfflfflffl}

applicants left

.

The previous Bellman equations specify the follow-
ing optimal action:

πb
t ≡ arg max

xt∈{0, 1}
xtut + E(vψ

b
t (xt)

t�1 ) s:t: xt ≤ tb: (1) 

The xt ≤ tb constraint ensures that you do not extend a 
job offer if you don’t have any positions available—that 
is, that you set xt � 0 if tb � 0. The previous expression 
states that you hire the period t applicant (i.e., set xt � 1) 
if you have a job opening (i.e., 1 ≤ tb) and if the total 
expected utility conditional on hiring them (i.e., ut+

E(vψ
b
t (1)

t�1 )) exceeds the total expected utility conditional 

on rejecting them (i.e., E(vψ
b
t (0)

t�1 )).
Your corresponding realized value is

vb
t ≡ π

b
t ut + vψ

b
t (π

b
t )

t�1 and vb
0 ≡ 0:

Hence, you garner value vβn from your n applicants and 
nβ�positions under the expected-utility-maximizing 
policy. However, if you could have interviewed every 
applicant before extending any job offers, then you 
would have garnered value Vβn, where

Vb
t ≡
Xtb

s�1
hs

t , 

and hs
t is the sth highest value in {ut, : : : , u1}. Since the 

utilities follow a uniform distribution, order statistic hs
t 

follows a beta(t� s+ 1, s) distribution.

The difference between the aggregate utility received 
in the offline problem and that received in the online 
problem is your regret:

Rn ≡ Vβn � vβn:

The following two propositions bound the expectation 
of this random variable.

Proposition 1. The optimal policy of the multisecretary 
problem yields an expected regret that grows at no more 
than a log n rate: E(Rn) ≤ (log(n+ 1) + 7)=8, for all n ∈N 

and β ∈ [0, 1=2].

Proposition 2. The optimal policy of the multisecretary 
problem yields an expected regret that grows at no less than 
a log n rate: E(Rn) ≥ (β=8)(1� β=8)(log(n)=2� log(6)), 
for all n ≥ 220β�8 and β ∈ [0, 1=2].

These theorems provide nonasymptotic results— 
that is, do not rely on big-O notation. Proposition 1’s 
finite-sample bound is especially interesting, as it high-
lights the near worthlessness of the value of future 
information. For example, suppose you have a billion 
applicants for 500 million jobs. In this case, your online 
value would be around (1=2+ 1)=2

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
value of average hire

·500 million|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
number of hires

�

375 million and your offline value would exceed your 
online value by around (log(109 + 1) + 7)=8 � 3:47. 
Hence, knowing the billion worker utilities upfront 
increases your workforce’s value by around 3:47=375 
million � :00000093%.

3.2. Upper Bound
I will now prove Proposition 1 by showing that Algo-
rithm 1 honors its bound. The proof has two parts: The 
first decomposes the total regret into a sum of myopic 
regrets, and the second shows that the expectation of 
the period t myopic regret is O(1=t) under the myopic- 
regret-minimizing Algorithm 1, and hence that the 
expected total regret is O(

Pn
t�1 1=t) �O(log n).

To derive the policy underlying Algorithm 1, sup-
pose that you hire the period t applicant with tb avail-
able positions if and only if their valuation exceeds τb

t , 
where {τb

t |t ∈ [n], tb ∈ {0, : : : , t}} is a collection of 
thresholds that have yet to be defined. These thresholds 
will satisfy τ0

t � 1 and τ1
t � 0 for all t ∈ [n], to ensure 

that bt ∈ [0, 1] for all t ∈ [n], where

bn ≡ β

and bt�1 ≡ ψ
bt
t (1{ut > τ

bt
t }):

In other words, you start period t with tbt ∈ {0, : : : , n}
open positions under the threshold policy. You receive 
corresponding value v̂n, where

v̂t ≡ 1{ut > τ
bt
t }ut + v̂t�1,

and v̂0 ≡ 0:
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Since the value under Algorithm 1 cannot exceed the 
value under the optimal algorithm, we have E(v̂n)

≤ E(vβn), which implies that that

E(R̂n) ≥ E(Rn),
where R̂t ≡ Vbt

t � v̂t:

Accordingly, it will suffice to upper bound E(R̂n). To 
this end, the offline value function satisfies the follow-
ing recurrence relations:

Vb
t � (ut� htb

t�1)
+
+Vψ

b
t (0)

t�1 (2) 

and Vψ
b
t (0)

t�1 � htb
t�1 +Vψ

b
t (1)

t�1 : (3) 

Line (2) states that if there are tb open positions, then the 
value of increasing the size of the applicant pool from 
t� 1 to t equals the option value of replacing the tbth 
most capable person, out of the first t� 1 applicants, 
with the period t applicant. Line (3) states that if there 
are t� 1 remaining applicants then the value of increas-
ing the number of job openings from (t� 1)ψb

t (1) �
tb� 1 to (t� 1)ψb

t (0) � tb positions equals the value of 
the tbth best applicant out of these t� 1 candidates.

Algorithm 1 (Minimize Myopic Regret)
1. input n, β, {ut}

n
t�1,

2. initialize bn :� β
3. for t from n to 1 do

(a) set xt :� 1{ut > 1� bt}
(b) set bt�1 :� ψbt

t (xt)

4. end for
5. output {xt}

n
t�1

Now suppose that ut ≤ τ
bt
t , and hence that bt�1 �

ψbt
t (0) and v̂t � v̂t�1. In this case, (2) implies that

R̂t � Vbt
t � v̂t

� (ut� htb
t�1)

+
+Vψ

b
t (0)

t�1 � v̂t�1

� (ut� htb
t�1)

+
+Vbt�1

t�1 � v̂t�1

� (ut� htb
t�1)

+
+ R̂t�1:

Next, suppose that ut > τ
bt
t , and hence that bt�1 � ψ

bt
t (1)

and v̂t � ut + v̂t�1. In this case, (2) and (3) imply that

R̂t � Vbt
t � v̂t

� (ut� htb
t�1)

+
+Vψ

b
t (0)

t�1 � v̂t

� (ut� htb
t�1)

+
+ (htb

t�1 +Vψ
b
t (1)

t�1 )� (ut + v̂t�1)

� (ut� htb
t�1)

�
+ R̂t�1:

Combining these two recurrence relations inductively 
yields

R̂n� rn+ R̂n�1�
Xn

t�1
rt, (4)

where rt≡1{ut ≤ τ
bt
t }(ut�htbt

t�1)
+
+1{ut>τ

bt
t }(ut�htbt

t�1)
�

�(1{ut>htbt
t�1}�1{ut>τ

bt
t })(ut�htbt

t�1):

In the previous expression, rt is your myopic regret, 
which is the cost of your period t hiring mistake. Total 
regret can always be decomposed into a sum of myopic 
regrets.

Now, here’s the key: We can integrate over ut and 
htb

t�1 when taking the expectation of rt because these 
variables are independent of each other and bt. To inte-
grate over ut, we use the fact that this uniform random 
variable satisfies E((1{ut > h}� 1{ut > τ})(ut� h)) �
h2=2� hτ+ τ2=2 for constants h and τ. To integrate over 
htb

t�1, we use the fact that this beta(t� tb, tb) random var-
iable satisfies E(htb

t�1) � 1� b and E(htb
t�1)

2
�
(1�b)+t(1�b)2

t+1 . 
These properties enable us to express the expected 
myopic regret in terms of bt and τbt

t :

E(rt) � E(E((1{ut > htbt
t�1}� 1{ut > τ

bt
t })(ut� htbt

t�1) | h
tbt
t�1

� h, bt � b))

� E(E(((htbt
t�1)

2
=2� htbt

t�1τ
bt
t + (τ

bt
t )

2
=2) | bt � b))

� E (1� bt) + t(1� bt)
2

2(t+ 1) � τbt
t (1� bt) + (τ

bt
t )

2
=2

 !

:

(5) 

I will now minimize the previous expectation by setting 
τb

t � 1� b (as specified by Algorithm 1), in which case 
the expression above simplifies to

E(rt) �
E(bt(1� bt))

2(t+ 1) :

With this, we find that the regret incurred under Algo-
rithm 1 satisfies our logarithmic bound:

E(Rn) ≤ E(R̂n)

�
Xn

t�1
E(rt)

�
Xn

t�1

E(bt(1� bt))

2(t + 1)

≤
Xn

t�1
sup

b∈(0, 1)

b(1� b)
2(t + 1)

�
Xn

t�1

1
8(t + 1)

≤ (log(n + 1) + 7)=8:

3.3. Lower Bound
I will now prove Proposition 2. The proof has four 
steps. The first creates an optimal policy version of the 
regret decomposition derived in the last section. The 
decomposition is the same as before, except bt now 
denotes the number of open positions under the 
optimal algorithm rather than under Algorithm 1. The 
second part of the proof shows that Ω(log n) expected 
regret follows immediately from the regret decomposition, 
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provided that there is an Ω(1) chance of bt being bounded 
away from either endpoint. Finally, the third part of the 
proof bounds the chance of bt being too close to one, and 
the fourth part bounds the chance of it being too close to 
zero.

To begin the proof, the objective in (1) is supermodu-
lar in xt and ut. Hence, Topkis’s theorem implies that 
there exists threshold collection

{τb
t |t ∈ [n], tb ∈ {0, : : : , t}}, (6) 

such that the optimal policy hires the period t applicant 
with tb available positions if and only if ut > τb

t . As 
before, these thresholds satisfy τ0

t � 1 and τ1
t � 0, since 

the optimal policy always makes exactly n job offers.
Now, since the optimal policy has a threshold struc-

ture, Lines (4) and (5) imply that

E(Rn)�
Xn

t�1
E (1�bt)+ t(1�bt)

2

2(t+1) �τbt
t (1�bt)+(τ

bt
t )

2
=2

 !

≥
Xn

t�1
E min

τ

(1�bt)+ t(1�bt)
2

2(t+1) �τ(1�bt)+τ
2=2

 ! !

�
Xn

t�1

E(bt(1�bt))

2(t+1) :

(7) 

Keep in mind that bt now characterizes the number of 
open positions under the optimal thresholds defined in 
(6):

bn ≡ β

and bt�1 ≡ ψ
bt
t (1{ut > τ

bt
t }): (8) 

Lower bounding Expression (7) will require upper 
bounding the probability that bt veers too closely to 
either endpoint. For this, I will show that n ≥ 220β�8 

and 
ffiffiffi
n
√
≤ t ≤ n=2 imply

Pr(bt < β=8) ≥ Pr(bt > 1� β=8) (9) 
and Pr(bt < β=8) ≤ 1=4: (10) 

Combining these bounds with Line (7) yields Proposi-
tion 2:

E(Rn)≥
Xn

t�1

Pr(β=8 ≤ bt ≤ 1�β=8)β=8(1�β=8)
2(t+1)

�
Xn

t�1

(1�Pr(bt < β=8)�Pr(bt>1�β=8))β=8(1�β=8)
2(t+1)

≥
X⌊n=2⌋

t�⌈
ffiffi
n
√
⌉

(1�1=4�1=4)β=8(1�β=8)
2(t+1)

≥

Z n=3

t�2
ffiffi
n
√
(β=8)(1�β=8)=(8t)dt

�(β=8)(1�β=8)(log(n)=2� log(6)):

Accordingly, it will suffice to establish Lines (9) and 
(10). I will begin with the former because it is more 
straightforward. Simply put, the {bt}

1
t�n process is more 

likely to approach the left endpoint than the right end-
point because it starts at β ≤ 1=2 and is symmetric 
about 1/2.

I will now formalize this intuition with a coupling 
argument. First, the problem symmetry discussed in 
Endnote 2 implies that the acceptance thresholds sat-
isfy

τb
t � 1� τ1�b

t : (11) 

Basically, this holds because one minus a uniform is 
also a uniform. Second, consider the following bench-
mark process:

b̂n ≡ 1� β

and b̂t�1 ≡ ψ
b̂ t
t (1{ut > τ

b̂ t
t }):

The {bt}
1
t�n and {b̂t}

1
t�n processes cannot jump over one 

another, because the number of open positions can only 
decrease by one or remain constant in a given period. 
The processes couple whenever they meet, with bt � b̂t 
implying bt�1 � b̂t�1. Accordingly, b̂t < β=8 implies 
bt < β=8, and hence Pr(b̂t < β=8) ≤ Pr(bt < β=8). Third, 
since one minus a uniform is also a uniform, the process 
{b̂t}

1
t�n has the same distribution as the process {b̃t}

1
t�n, 

where

b̃n ≡ 1� β

and b̃t�1 ≡ ψ
b̃ t
t (1{1� ut > τ

b̃ t
t }):

With (11), we can rearrange these equations like this:

1� b̃n � β

and 1� b̃t�1 � 1� ψb̃t
t (1{1� ut > τ

b̃t
t })

� 1� ψb̃t
t (1{ut < τ

1�b̃ t
t })

�
t� 1� tb̃t + 1{ut < τ

1�b̃ t
t }

t� 1

�
t(1� b̃t)� 1{ut ≥ τ

1�b̃ t
t }

t� 1
� ψ1�b̃ t

t (1{ut ≥ τ
1�b̃ t
t }):

Compare this system to (8), and you will see that 
1� b̃t � bt, almost surely. Accordingly, Pr(bt > 1� β=8) �
Pr(b̃t < β=8) � Pr(b̂t < β=8) ≤ Pr(bt < β=8), which estab-
lishes (9).

Finally, I will establish (10). The argument has three 
steps. First, I establish that the regret conditional on 
bt < β=8 is at least as high as the value you would get 
by replacing the worst ⌊tβ=8⌋ applicants hired before 
period t with the best ⌊tβ=8⌋ applicants rejected after 
period t, which is at least as high as ⌊tβ=8⌋ times the 
difference between the value of the (tbt + ⌊tβ=8⌋)th best 
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applicant interviewed after period t and the (nβ� tbt�

⌊tβ=8⌋ + 1)th best applicant interviewed before period t. 
Second, I use the binomial Chernoff to establish that 
there is at least a 1� 1=12� 1=12 � 5=6 chance that the 
(tbt + ⌊tβ=8⌋)th best applicant interviewed after period 
t is at least β=2 units better than the (nβ� tbt�

⌊tβ=8⌋ + 1)th best applicant interviewed before period t. 
Third, I use these results to show that the optimal pol-
icy would violate the (log(n+ 1) + 7)=8 upper regret 
bound if the event bt < β=8 was not sufficiently rare.

Now we will prove Line (10). Conditional on having 
tbt open positions at the start of period t, the best the 
online policy can do is hire the best tbt out of the last t 
applicants and hire the best nβ� tbt out of the first n � t 
applicants. Thus, the online value must satisfy

vβn ≤
Xtbt

s�1
hs

t +
Xnβ�tbt

s�1
←
hs

t, 

where look-back order statistic 
←
hs

t is the sth largest 
value in {un, : : : , ut+1} (i.e., it equals hs

n�t, but with the 
order of the applicants reversed). Furthermore, if 
bt < β=8, then the offline policy could hire the best tbt +

⌊tβ=8⌋ out of the last t applicants and the best nβ� tbt�

⌊tβ=8⌋ out of the first n � t applicants. Hence, the offline 
value must satisfy the following when bt < β=8:

Vβn ≥
Xtbt+⌊tβ=8⌋

s�1
hs

t +
Xnβ�tbt�⌊tβ=8⌋

s�1
←
hs

t :

Differencing the last two inequalities yields the follow-
ing for bt < β=8:

Rn ≥
Xtbt+⌊tβ=8⌋

s�tbt+1
hs

t �
Xnβ�tbt

s�nβ�tbt�⌊tβ=8⌋+1
←
hs

t

≥ ⌊tβ=8⌋htbt+⌊tβ=8⌋
t � ⌊tβ=8⌋

←
hnβ�tbt�⌊tβ=8⌋+1

t

≥ ⌊tβ=8⌋(h⌊tβ=4⌋
t �

←
hnβ�⌊tβ=4⌋

t )

≥ ⌊tβ=8⌋1{h⌊tβ=4⌋
t ≥ 1� 3β=8}

1{
←
hnβ�⌊tβ=4⌋

t ≤ 1� 7β=8}(7β=8� 3β=8)

≥ ⌊tβ2=16⌋1{h⌊tβ=4⌋
t ≥ 1� 3β=8}

1{
←
hnβ�⌊tβ=4⌋

t ≤ 1� 7β=8}:

The first line states that your regret is at least as large as 
the benefit you would get by replacing the worst ⌊tβ=8⌋
applicants hired before period t with the best ⌊tβ=8⌋
applicants rejected after period t. The second line main-
tains that the value of this difference is at least as large 
as ⌊tβ=8⌋ (i.e., the number of people exchanged) times 
the difference between htbt+⌊tβ=8⌋

t (i.e., the value of the 
worst candidate added) and 

←
hnβ�tbt�⌊tβ=8⌋+1

t (i.e., the 
value of the best candidate removed). The remaining 
three lines use the fact that hs

t decreases in its superscript 

to connect the bound with the following binomial 
Chernoff results: If t ≥ 48 log(12)=β, n ≥ 336 log(12)=β, 
and 

ffiffiffi
n
√
≤ t ≤ n=2 then

Pr(h⌊tβ=4⌋
t ≥ 1� 3β=8) ≥ 11=12

and Pr(
←
hnβ�⌊tβ=4⌋

t ≤ 1� 7β=8) ≥ 11=12, 

and, accordingly, Proposition 1 and Bonferroni’s inequal-
ity imply the following for the specified range of n and t:

(log(n+ 1) + 7)=8

≥ E(Rn)

≥ ⌊tβ2=16⌋Pr(bt < β=8 ∩ h⌊tβ=4⌋
t ≥ 1� 3β=8 ∩

←
h⌊(n�t)β⌋

t

≤ 1� 7β=8)

≥ ⌊
ffiffiffi
n
√
β2=16⌋(Pr(bt < β=8) + 11=12+ 11=12� 2):

Finally, this inequality implies (10) when n ≥ 220β�8 

and 
ffiffiffi
n
√
≤ t ≤ n=2.

4. Online Linear Programming Problem
4.1. Model
I will now extend the techniques developed in the last 
section to the online linear program of Li and Ye 
(2022).3 See Table A.1 in the appendix for a notation 
guide and the online supplement for the proofs.

As before, I will count backward from period n ∈N 

to period 1, positioning period t � 1 after period t. In 
each period, a customer arrives, and you must decide 
whether to fulfill their demand from your inventory. 
You begin in period n with initial inventory endow-
ment nbn � nβ, for some given β ∈Rm

+ , so that you have 
e′j bn units of the jth resource budgeted for the “average” 
remaining period, where ej is the unit vector indicating 
the jth position. If you satisfy the period–n customer 
then you exchange inventory bundle an ∈Rm

+ for utility 
un, so that you begin period n� 1 with resource vector 
bn�1 ≡ (nbn � an)=(n� 1) (both nbn and an can take non-
integer values). If, on the other hand, you reject the 
period n customer, then you receive no utility and lose 
no resources, so that you begin period n� 1 with 
resource vector bn�1 ≡ nbn=(n� 1). This pattern repeats 
so that bt�1 ≡ (tbt� at)=(t� 1) if you satisfy the period–t 
customer and bt�1 ≡ (tbt)=(t� 1) otherwise. The prob-
lem is dynamic because you do not observe variables ut 
and at until the beginning of period t. These variables 
satisfy the following assumptions.

Assumption 1. The customers are i.i.d.: vectors {(ut, at)}
n
t�1 

are drawn independently of one another, from joint distribu-
tion µ.

Assumption 2. The utilities and resource requirements 
are nonnegative: u1, a1 ≥ 0 almost surely.
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Assumption 3. The utilities have finite expectation: E(u1)
< ∞.

Assumption 4. The resource requirements are bounded: 
a1 ≤ α, almost surely, for some α ∈Rm

+ .

Note that u1 can have unbounded support, whereas 
the other models cited in Section 2—most notably those 
of Lueker (1998) and Li and Ye (2022)—restrict u1 to a 
finite range.

Let vb
t denote the utility you receive from period t 

onwards when you begin that period with resource 
endowment tb ∈Rm. Since you follow the expected- 
utility-maximizing policy, this variable’s expectation 
satisfies the following Bellman equations:

E(vb
t ) ≡E max

xt∈{0,1}
xtut+E(vψ

b
t (xtat)

t�1 ) s:t: xtat ≤ tb
� �

,

(12) 
E(vb

0) ≡ 0,

and ψb
t (a) ≡

(tb� a)=(t�1) t> 1,
0 t� 1:

�

(13) 

To better understand this system, consider the follow-
ing optimal action:

πb
t ≡ arg max

xt∈{0, 1}
xtut + E(vψ

b
t (xtat)

t�1 ) s:t: xtat ≤ tb: (14) 

In other words, you accept the period t customer (i.e., 
set xt � 1) if you have inventory enough to do so (i.e., 
at ≤ tb) and if the total expected utility conditional on 
satisfying this customer (i.e., ut +E(vψ

b
t (1)

t�1 )) exceeds the 
total expected utility conditional on turning them away 
(i.e., E(vψ

b
t (0)

t�1 )).
Under this policy you garner total value vβn from 

your initial nβ�resource endowment, where

vb
t ≡ π

b
t ut + vψ

b
t (π

b
t at)

t�1 and vb
0 ≡ 0: (15) 

However, if you could have observed all the customer 
attributes before deciding which ones to satisfy, then 
you would have garnered value Vβn, where

Vb
t ≡ max

x∈{0, 1}t

Xt

s�1
xsus s:t:

Xt

s�1
xsas ≤ tb: (16) 

Your regret is the difference between the utility you 
extract when you observe all customer variables 
upfront and the utility you extract when you learn 
these variables on the fly:

Rn ≡ Vβn � vβn: (17) 

Our objective is to show that E(Rn) �Θ(log n) as 
n→∞.

Since expanding your choice set from {0, 1} to [0, 1]
will not make you worse off, we have

Vβn ≥ Vβn,

where Vb
t ≡ max

x∈[0, 1]t

Xt

s�1
xsus s:t:

Xt

s�1
xsas ≤ tb (18) 

� min
y∈Rm

+ ,w∈Rt
+

tb′y+
Xt

s�1
wt s:t: a′ty

+wt≥ut ∀ t,
(19) 

�min
y∈Rm

+

tΛb
t (y), (20) 

Λb
t (y)≡ b′y+

Xt

s�1
∆s(y)+=t,

and ∆t(y)≡ut�a′ty: (21) 

Line (18) is the linear programming relaxation of the 
integer program specified in Line (16). Accordingly, 
whereas Vb

t is the objective value of the offline optimi-
zation problem that gives you resource bundle tb ∈Rm 

to allocate over t periods, Vb
t is the objective of the anal-

ogous problem that allows you to satisfy a fraction of a 
customer’s demand. Line (19) is the dual of the problem 
given in Line (18), with y corresponding to the 
Pt

s�1 xsas ≤ tb constraint and w corresponding to the 
xt ≤ 1 constraints. Finally, we distill this dual linear 
program to the convex optimization problem given in 
Line (20) by replacing wt with its smallest possible 
value, (ut� a′ty)

+. (To remember that this problem is a 
dual, it helps to think of Λ�as an upside-down V.)

The dual problem in (20) has a not-necessarily- 
unique shadow price minimizer:

yb
t ∈ arg min

y∈Rm
+

tΛb
t (y): (22) 

Since we initialized bn � β, the problem in (20) con-
verges, as n→∞, to the following deterministic fluid 
limit:

min
y∈Rm

+

Λβ∞(y) where Λb
∞(y) ≡ b′y+E(∆1(y)+): (23) 

The following assumption endows this limiting prob-
lem with a positive shadow price solution.

Assumption 5. All resource constraints bind in the fluid 
approximation: There exists yβ∞ ∈ arg miny∈Rm

+
Λβ∞(y) such 

that yβ∞ > 0.

Extending this assumption to accommodate con-
straints that are strictly slack in the limit is simple. 
However, it is harder to accommodate constraints that 
just barely hold in the limit. See the recent work of Jiang 
et al. (2024) for an interesting analysis of the degenerate- 
limit case.

The final assumption is the multivariate analog of 
the local restriction of Lueker (1998). Lueker imposed 
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two critical constraints on the joint distribution of 
(u1, a1): a local restriction that holds in a neighborhood 
of the u1 � a′1yβ∞ level set and a global restriction that 
holds across the entire breadth of the distribution. I will 
need only the former because all the tough calls lie at 
the margin. For example, the following assumption 
permits point masses in the distribution, so long as 
they do not abut the fluid model’s accept-reject indiffer-
ence curve.

Assumption 6. There’s a continuum of marginal custo-
mers that strain the resources in a linearly independent 
fashion: There exists a neighborhood of yβ∞ such that the 
Jacobian matrix ∂

∂y E(1{∆1(y) > 0}a1) exists, is full rank, 
and is continuous in y in this neighborhood.

This assumption is more straightforward than the 
second-order growth condition imposed by Li and Ye 
(2022) and many others. Indeed, it simply states that 
shadow prices give us complete control over invento-
ries. To see this, E(1{∆1(y) > 0}a1) is the mean resource 
consumption rate when we satisfy all customers with 
positive surplus utility, under shadow price vector y. 
Accordingly, Jacobian matrix ∂

∂y E(1{∆1(y) > 0}a1)maps 
marginal shadow price changes to marginal consump-
tion rate changes. This matrix being full rank ensures 
that we can control the inventory burn rate in a linearly 
independent fashion by fine-tuning y. For example, 
marginally shifting the shadow price in the direction of 
( ∂
∂y E(1{∆1(y) > 0}a1))

�1ei would marginally decrease 
the consumption of the ith resource, without changing 
that of the other resources.

Here’s a simple sufficient condition that implies 
Assumption 6.
Example 1. Suppose that given a1, utility u1 has 
bounded and continuous conditional density function 
g(u1 |a1), which almost surely satisfies g(a′1yβ∞ |a1) > 0. 
Furthermore, suppose that E(a1a′1) is nonsingular. w

The following lemma is equivalent to Assumption 6, 
so you can consider it an alternative assumption.
Lemma 1. The limiting problem’s second derivative is pos-
itive and continuous at its minimizer: Hessian matrix 
Λ̈∞(y) ≡ ∂

2

∂y2Λ
b
∞(y) �� ∂

∂y E(1{∆1(y) > 0}a1) exists, is posi-
tive definite (and hence full rank), and its elements are con-
tinuous in y in a neighborhood of yβ∞.

Combining Lemma 1 with Assumption 5 yields the fol-
lowing sister lemma via the implicit function theorem.

Lemma 2. Limiting shadow prices are locally differentiable 
in the resource vector: If b is sufficiently close to β, then Λb

∞

has a unique minimizer, yb
∞ > 0, which is continuously 

differentiable—and hence Lipschitz continuous—in b, with 
∂
∂b yb
∞ ��Λ̈∞(yb

∞)
�1.

Together, Lemmas 1 and 2 imply that Λ̈∞(yb
∞)—the 

Hessian matrix of Λb
∞ at its minimum—is continuous 

in b in a neighborhood of β. Accordingly, {ωb
i }i∈[m] and 

{σb
i }i∈[m] are likewise continuous in b, where ωb

i is an 
eigenvector of Λ̈∞(yb

∞) with eigenvalue σb
i . Further-

more, since Λ̈∞(yb
∞) is positive definite, we can take 

{ωb
i }i∈[m] to be orthonormal and take {σb

i }i∈[m] to be real 
numbers that satisfy σb

1 ≥⋯≥ σb
m > 0 (provided that b is 

sufficiently close to β).
Lemma 1 also implies that

Λ̇
b
∞(y) ≡

∂

∂y
Λb
∞(y) � b� E(1{∆1(y) > 0}a1) (24) 

exists and is continuous in y a neighborhood of yβ∞. 
Unfortunately, the finite analog, Λb

t , is not always 
differentiable, but when it is, its gradient equals subgra-
dient

Λ̇
b
t (y) ≡ b�

Xt

s�1
1{∆s(y) > 0}as=t: (25) 

Our model is now fully characterized. Thus, we are 
now ready for the primary results.

Theorem 1. The optimal policy of the online linear pro-
gram without distribution learning yields an expected 
regret that grows at no more than a log n asymptotic rate: 
E(Rn) �O(log n) as n→∞ when distribution µ is known 
to the decision maker.

Theorem 2. The optimal policy of the online linear program 
with distribution learning yields an expected regret that 
grows at no more than a log n asymptotic rate: E(Rn) �

O(log n) as n→∞ when distribution µ is unknown to the 
decision maker.

Theorem 3. The optimal policy of the online linear pro-
gram without distribution learning yields an expected 
regret that grows at no less than a log n asymptotic rate: 
E(Rn) �Ω(log n) as n→∞ when distribution µ is known 
to the decision maker.

Corollary 1. The optimal policy of the online linear pro-
gram with distribution learning yields an expected regret 
that grows at no less than a log n asymptotic rate: E(Rn) �

Ω(log n) as n→∞ when distribution µ is unknown to the 
decision maker.

Because knowing µ will not decrease your regret, 
Corollary 1 follows immediately from Theorem 3, and 
Theorem 1 follows immediately from Theorem 2. How-
ever, I do not call Theorem 1 a corollary because I pro-
vide an independent proof for it. Indeed, I will use the 
proof of Theorem 1 as a stepping stone to the proof of 
Theorem 2.

Also, the single-dimensional results of Section 3 and 
Lueker (1998) imply none of the previous multidimen-
sional results—The previous findings establish that an 
online linear program can exhibit logn regret but not 
that it must do so. Naturally, the regret could be larger 
for the “harder” online linear program, but the regret 
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can also be smaller. Indeed, although an additional 
restriction cannot increase the objective value, it can 
decrease the regret by burdening the offline problem 
more than the online problem. For instance, Example 2
illustrates that adding a second constraint to the multi-
secretary problem can reduce its expected regret from 
Θ(log n) to o(1), and Example 3 illustrates that adding a 
second constraint to two copies of the stochastic knap-
sack problem of Arlotto and Xie (2020) can intertwine 
the problem instances in a manner that reduces their 
combined regrets from Θ(log n) to O(1). Hence, some 
constraints negate the log n regret rate; I must prove that 
all such negating constraints violate our assumptions.

Example 2. Consider the multisecretary problem of 
Section 3.1, but with an additional payroll budget con-
straint: Now, in addition to the nβ�available positions, 
you also start with nβ=2 dollars, which you use to pay 
your workforce. The period t applicant commands 
wage ut, so the applicants all yield the same bang for 
the buck. By design, you will almost certainly run out 
of money before you fill all the positions when n is 
large, both under the optimal online and offline poli-
cies. Hence, only your payroll budget constraint is rel-
evant as n→∞. However, you will never regret how 
you spend this budget because every dollar yields the 
same marginal utility. Accordingly, the regret must go 
to zero, almost surely, as n→∞. w

Example 3. Suppose you encounter a stream of n 
identical items. Since they are all the same, a stochastic 
knapsack problem involving these n items would 
yield zero regret. Now, imagine that each item con-
sists of two components, A and B, each valued at one 
dollar. Assume the volume of the A component is a 
uniform random variable, and the volume of the B 
component is one minus the volume of the A compo-
nent, making it also a uniform random variable. Also, 
suppose you have two backpacks: bag A for storing A 
components and bag B for storing B components. If 
both backpacks have a capacity of n=4, then you will 
face A and B stochastic knapsack problems, both of 
which are expected to yield Θ(log n) regret, according 
to the results of Lueker (1998) and Arlotto and Xie 
(2020). Now, introduce a constraint that prohibits 
packing only one component from an item. Compel-
ling you to pack both components or neither effec-
tively reverts the problem to the scenario in which all 
items have equal value. For example, an item with an 
attractive A component will have a commensurately 
unattractive B component. In this case, the regret will 
be proportional to the unused space in one backpack 
when the other is filled, a quantity that has O(1) 
expectation under Algorithm 2, per Corollary 4. Add-
ing the restriction lowers the regret by replacing the 
component-level selection with item-level selection. 
Although there is plenty of variation in component 

valuations, there is essentially no variation in item 
valuations due to the perfectly negative correlation 
between the components’ volumes. w

4.2. Dual Convergence Results
Everything boils down to shadow prices, so we can 
only make progress once we understand how yb

t con-
verges to yb

∞. I will thus begin the analysis by present-
ing four propositions that crisply characterize the 
shadow prices’ limiting behavior.

Proposition 3. There exists δ > 0 such that 
ffiffi
t
√
(yb

t � yb
∞)

→
d

N (0,Σb) for all b ∈ Bδ(β), where Σb ≡ Λ̈∞(yb
∞)
�1Cov 

(1{∆1 (yb
∞) > 0}a1)Λ̈∞(yb

∞)
�1 is full rank and continuous in 

b ∈ Bδ(β).

In the previous proposition, Bδ(β) denotes the ball of 
radius δ�about β. However, do not dwell on these tech-
nical δ�balls; instead, direct your attention to this: 
ffiffi
t
√
(yb

t � yb
∞)→

d
N (0,Σb). It’s hard to believe, but it seems 

the basic fact that the shadow prices of a stochastic lin-
ear program converge to a multivariate normal was 
previously unknown.

Unfortunately, this proposition proved less helpful than 
I had hoped because the rate of convergence could depend 
on b—that is, the magnitude of t required to ensure that ffiffi

t
√
(yb

t � yb
∞) ≈N (0,Σb) could be unbounded in any 

neighborhood of β. Unfortunately, this will not do because 
I will need to invoke my convergence results at a random 
value of bt. Hence, rather than Proposition 3, I will use the 
following results, which control the limiting shadow prices 
uniformly across b ∈ Bδ(β).

Proposition 4. There exists δ > 0 such that E(supb∈Bδ(β)
‖yb

t � yb
∞‖

2
) �O(1=t).

Proposition 5. There exists δ > 0 such that E(infb∈Bδ(β)
‖yb

t � yb
∞‖

2
) �Ω(1=t).

Corollary 2. There exists δ > 0 such that the covariance 
matrix of yb

t has a Θ(1=t) spectral norm, for all b ∈ Bδ(β).

Positioning the supb∈Bδ(β) and infb∈Bδ(β) terms inside of 
the expectations makes these results especially strong. 
We’ll need this extra strength to bound the regret when 
distribution µ is unknown, in which case shadow 
prices and inventory vectors become tangled.4

Proposition 4 is a stronger version of the first theo-
rem of Li and Ye (2022), which states that E(‖yb

t � yb
∞‖

2
)

�O((log log t)=t). I had to shave off the repeated loga-
rithms to derive a sharp logn upper bound. I did so 
with a new approach. I first bounded the difference 
between yb

t and yb
∞ with the difference between the lim-

iting gradient, Λ̇b
∞(·), and its finite analog, Λ̇b

t (·), evalu-
ated at the shadow price midway point, ŷb

t ≡ (yb
t + yb

∞)=2. 
However, ŷb

t is difficult to work with, so I then 
bounded the expected value of ‖Λ̇b

t (ŷ
b
t )� Λ̇

b
∞(ŷ

b
t )‖

2 

Bray: Logarithmic Regret in Multisecretary and Online Linear Programs 
10 Operations Research, Articles in Advance, pp. 1–16, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
4.

85
.4

7]
 o

n 
26

 F
eb

ru
ar

y 
20

25
, a

t 0
9:

14
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



with the expected value of supy∈B2ɛ(y
β
∞)
‖Λ̇

b
t (y)� Λ̇

b
∞(y)‖

2. 
Finally, I bounded the expected value of this supre-
mum with a classic empirical processes result.

I also used empirical processes to prove Proposition 5, 
which will permit the corresponding lower regret bound. 
Specifically, I establish this result by showing that 
ffiffi
t
√
(yb

t � yb
t ) is near γ ∈Rm if 

ffiffi
t
√
(Λ̇
β
t (y)� Λ̇

β
∞(y)) is near 

Λ̈∞(y
β
∞)γ�for all y in a neighborhood of yβ∞, and this 

latter condition holds because the mapping (j, y) ⊢→
ffiffi
t
√

e′j (Λ̇
b
t (y)� Λ̇

b
∞(y)) converges to a sufficiently well- 

behaved Gaussian process, indexed by y and j.
While the previous propositions establish that our 

shadow price variances fall linearly with t, the follow-
ing proposition and corollary show that their tails fall 
exponentially with t.
Proposition 6. For all p ≥ 0, there exist δ, C > 0 such that 
E(supb∈Bδ(β)1{y

b
t ∉ Bɛ(yb

∞)}‖yb
t � yb

∞‖
p
) ≤ exp(�Cɛ2t) for 

all sufficiently small ɛ > 0 and sufficiently large t.

Corollary 3. There exist δ, C > 0 such that Pr(supb∈Bδ(β)
‖yb

t � yb
∞‖ > ɛ) ≤ exp(�Cɛ2t) for all sufficiently small ɛ > 0 

and sufficiently large t.

Whereas the third proposition of Li and Ye (2022) 
establishes a concentration of measure for random sub-
gradient Λ̇b

t (yb
∞), Corollary 3 establishes a concentration 

of measure for random shadow price yb
t . This latter result 

is far harder to prove because yb
t is not a sum of i.i.d. ran-

dom variables, unlike Λ̇b
t (yb
∞). I establish the shadow 

price concentration of measure by projecting the shadow 
prices onto the subgradient of the dual value function at 
many points. These projections yield inequalities that 
describe a small box around yb

t and yb
∞. This box has ran-

dom faces, so its walls do not meet at 90-degree angles. 
Still, the angles exhibit a concentration of measure, so the 
probability that the wall’s fluctuations undermine the 
box’s integrity falls exponentially fast with t. More speci-
fically, because yb

t is a minimizer, it must satisfy subgradi-
ent constraint (yb

t � yb
∞� ηkωb

j )
′Λ̇

b
t (yb
∞ + ηkωb

j ) ≤ 0 for 
all j ∈ [m] and k ∈ {�1, 1}. These inequalities position yb

t 
in the intersection of 2m half-spaces. Unfortunately, these 
half-spaces are random because Λ̇b

t is stochastic. How-
ever, Λ̇b

t (yb
∞ + ηkωb

j ) concentrates about ηkσb
jω

b
j , so the 

set of points that satisfy (yb
t � yb

∞� ηkωb
j )
′Λ̇

b
t (yb
∞ +

ηkωb
j ) ≤ 0 for all j ∈ [m] and k ∈ {�1, 1} resemble those 

that satisfy (yb
t � yb

∞� ηkωb
j )
′ηkσb

jω
b
j ≤ 0 for all j ∈ [m] and 

k ∈ {�1, 1}. This latter set of points forms a perfect cube 
around yb

∞. Hence, our initial subgradient constraints sit-
uate yb

t in a wonky cube about yb
∞, with off-kilter faces.

4.3. Upper Bound with Known Distribution
I will now prove Theorem 1 by showing that Algorithm 
2 honors its O(log n) bound. I will begin by showing 

that the inventory levels follow a martingale under this 
algorithm. This martingale property concentrates the 
distribution of bt to the small neighborhood of β�for 
which our lemmas apply. Next, I will express the 
values obtained under Algorithm 2 and those obtained 
under the optimal algorithm with Bellman-style recur-
rence relations. I will then combine these recurrence 
relations to create an analogous regret recurrence rela-
tion, which I will unravel to create a corresponding 
regret recurrence relation. Finally, I will bound this 
decomposition’s myopic regret with our shadow price 
convergence results.

Algorithm 2 satisfies the period t customer if and 
only if (i) there is inventory enough to do so (i.e., 
tbt ≥ at) and (ii) the customer has positive surplus util-
ity under the fluid-approximation shadow prices (i.e., 
∆t(ybt

∞) > 0). Under this policy, the inventory vector fol-
lows a martingale: for t > 1, bt ≥ α=t, and bt sufficiently 
close to β, we have

E(bt�1 | bt) � E(ψbt
t (xtat) | bt)

� (tbt�E(1{∆t(ybt
∞) > 0}at | bt))=(t� 1)

� (tbt� bt + Λ̇
bt
∞(y

bt
∞))=(t� 1)

� bt + Λ̇
bt
∞(y

bt
∞)=(t� 1)

� bt:

This martingale property implies the following, via the 
Azuma–Hoeffding inequality.

Lemma 3. The inventory vector abides by a concentration 
of measure under Algorithm 2: For all δ > 0, there exists 
C > 0 such that Pr(bt ∉ Bδ(β)) ≤ exp(�Ct), for all suffi-
ciently large t.

This result is stronger than one Li and Ye (2022) 
used. To see this, let τ(δ) represent the first time that bt 
leaves Bδ(β):

τ(δ) ≡
0 {bt | t ∈ [n]} ⊂ Bδ(β),
max{t | bt ∉ Bδ(β)} otherwise:

(

(26) 

Li and Ye proved that their algorithm yields E(τ(δ))
�O(log n log log n)—that is, that it constrains the 
resource vector for all but the last O(log n log log n) per-
iods. However, I could not use this O(log n log log n)
result to derive a O(log n) regret bound, so I had to 
sharpen their finding. As the following corollary 
explains, I managed to tighten it to O(1).

Corollary 4. The time remaining after the resource vector 
leaves a given neighborhood of β�is asymptotically indepen-
dent of n, under Algorithm 2: E(τ(δ)) �O(1) as n→∞, 
for all δ > 0.

Algorithm 2 (Martingale Controler)
1. input n, β, {ut}

n
t�1, {at}

n
t�1, µ

2. initialize bn :� β
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3. for t from n to 1 do
(a) set xt :� 1{∆t(ybt

∞) > 0}1{tbt ≥ at}

(b) set bt�1 :� ψbt
t (xtat)

4. end for
5. output {xt}

n
t�1

Since the optimal policy is no worse than our martin-
gale policy, we have

E(R̂n) ≥ E(Rn), (27) 

where R̂t ≡ Vbt
t � v̂t and v̂t is the value collected by 

Algorithm 2 after period t:

v̂t ≡ 1{∆t(ybt
∞) > 0}1{tbt ≥ at}ut + v̂t�1,

and v̂0 ≡ 0: (28) 

Accordingly, it will suffice to show that E(R̂n) �O(log n). 
As in the multisecretary case, I will bound this benchmark 
regret by decomposing it into a sum of myopic regrets.

Lemma 4. The benchmark regret under Algorithm 2 can 
be upper bounded by a sum of approximate myopic regrets: 
There exists sufficiently small δ > 0 such that

R̂n ≤
Xn

t�1
rt,

where rt ≡ 1{bt ∉ Bδ=2(β)}
Xt

s�1
us

+ 1{bt ∈ Bδ=2(β)}1{∆t(ybt
∞) > 0}∆t(ybt�1

t�1)
�

+ 1{bt ∈ Bδ=2(β)}1{∆t(ybt
∞) ≤ 0}∆t(ybt�1

t�1 )
+
:

The indicator variables in the definition of rt character-
ize whether Algorithm 2 specifies satisfying the period 
t customer and whether bt lies in the (δ=2)-ball of β. (I 
use the (δ=2)-ball rather than the δ-ball, because bt ∈

Bδ=2(β) implies bt�1 ∈ Bδ(β)when t is large.)
Finally, combining the preceding lemma with the fol-

lowing lemma yields Theorem 1.

Lemma 5. The approximate period-t myopic regret under 
Algorithm 2 is O(1=t) in expectation: there exists C > 0 
such that rt ≤ C=t.

To control the first term of the myopic regret, I use 
the fact that E(

Pt
s�1 us) increases linearly in t, whereas 

Pr(bt ∉ Bδ=2(β)) falls exponentially, by Lemma 3. To con-
trol the second term, I bound E(1{∆t(ybt

∞) > 0}∆t(ybt�1
t�1 )

�
)

in terms of E(supb∈Bδ(β)‖y
b
t�1� yb

∞‖
2
), E(supb∈Bδ(β)1{y

b
t�1 

∉ Bɛ(yb
∞)}‖yb

t�1� yb
∞‖), and Pr(supb∈Bδ(β)‖y

b
t � yb

∞‖ > ɛ), 
and then apply Propositions 4 and 6 and Corollary 3. 
Finally, I control the third term in a similar manner.

4.4. Upper Bound with Unknown Distribution
I will now prove Theorem 2 by showing that Algorithm 
3 honors its O(log n) bound. The only difference 
between Algorithms 2 and 3 is that the former uses 

limiting shadow price ybt
∞, which requires knowledge 

of µ, whereas the latter uses look-back shadow price 
←

ybt
t , 

which is an estimate of ybt
∞ given the data observed up 

until period t + 1. More specifically 
←

ybt
t is a minimizer of 

the backward-looking problem

←
Λb

t (y) ≡ b′y+
Xn

s�t+1
∆s(y)+=(n� t): (29) 

Algorithm 3 incorporates learning, as shadow price 
estimate 

←

ybt
t starts hopelessly crude and ends finely 

tuned.
Our shadow price convergence results hold for look- 

back shadow prices but with (n� t)-period scaling 
rather than t-period scaling. For example, Proposition 4
implies that E(1{bt ∈ Bδ(β)}‖

←

ybt
t � ybt

∞‖
2
) �O(1=(n� t)). 

(This would not be the case if the proposition posi-
tioned the supb∈Bδ(β) term outside of the expectation 
because bt correlates with the random map b ⊢→

←

yb
t .)

Algorithm 3 (Estimate then Forecast)
1. input n, β, {ut}

n
t�1, {at}

n
t�1

2. initialize bn :� β
3. for t from n to 1 do

(a) set xt :� 1{∆t(
←

ybt
t ) > 0}1{tbt ≥ at}

(b) set bt�1 :� ψbt
t (xtat)

4. end for
5. output {xt}

n
t�1

Although the inventory vector does not follow a 
martingale under Algorithm 3, as it does under Algo-
rithm 2, we can still control its trajectory for all but O(1) 
periods, as the following results establish.

Lemma 6. The inventory vector abides by a concentration 
of measure under Algorithm 3: For all δ > 0, there exists 
C > 0 such that Pr(bt ∉ Bδ(β)) ≤ exp(�C min(t,

ffiffiffi
n
√
)), for 

all sufficiently large t ≤ n.

Corollary 5. The time remaining after the resource vector 
leaves a given neighborhood of β�is asymptotically indepen-
dent of n under Algorithm 3: E(τ(δ)) �O(1) as n→∞, for 
all δ > 0.

The critical insight underlying Lemma 6 is that bt 
cannot escape Bδ=2(β) in less than Ω(n) time and hence 
without first generating an Ω(n)-sized sample of train-
ing data. This means that by the time the {bt}

1
t�n process 

has made it halfway out of Bδ(β)—that is, departed 
Bδ=2(β)—our look-back shadow prices are accurate 
enough to (almost) guarantee that it cannot traverse the 
second half. This property enables us to restrict atten-
tion to the periods with accurate look-back shadow 
prices (i.e., periods after time τ(δ=2)).

However, controlling the evolution of {bt}
1
t�n is diffi-

cult even when look-back shadow prices are accurate. 
The problem is that, although bt is independent of the 
mapping b ⊢→ yb

t , it is not independent of the mapping 
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b ⊢→
←

yb
t . Indeed, the inventory vectors and look-back 

shadow prices intertwine in a complex dance. To 
extricate bt from this pas de deux, I decompose it into 
three parts: bτ(δ=2)+1,

Pτ(δ=2)
s�t bs�E(bs |bs+1), and 

Pτ(δ=2)
s�t 

E(bs |bs+1)� bs+1. By definition, the first part is within 
δ=2 of β. The second part follows a martingale and thus 
concentrates around zero. The third part is small, pro-
vided that 

←

ybs
s is near ybs

∞, for all s ∈ {t+ 1, : : : ,τ(δ=2) +1}. 
Crucially, τ(δ=2) will be small enough to ensure that 
this holds with high probability, provided that bs is 
near β�for all s ∈ {t+ 1, : : : ,τ(δ=2) + 1}. Thus, I can 
inductively establish the result: bs being near β�for s ∈
{t+ 1, : : : ,τ(δ=2) + 1} implies that 

←

ybs
s is near ybs

∞ for 
s ∈ {t+ 1, : : : ,τ(δ=2) + 1}, which implies that 

Pτ(δ=2)
s�t 

E(bs |bs+1)� bs+1 is small, which implies that bt is near β.
Having reigned in our inventory vectors, we are now 

ready to decompose regret benchmark

R̂t ≡ Vbt
t � v̂t, (30) 

where v̂t now denotes the value collected after period t 
under Algorithm 3:
v̂t ≡1{∆t(

←

y bt
t )> 0}1{tbt ≥ at}ut+ v̂t�1, and v̂0 ≡ 0: (31) 

Lemma 7. The benchmark regret under Algorithm 3 can 
be upper bounded by a sum of approximate myopic regrets: 
There exists sufficiently small δ > 0 such that

R̂n ≤
Xn

t�1
rt,

where rt ≡ 1{bt ∉ Bδ=2(β)}
Xt

s�1
us

+ 1{bt ∈ Bδ=2(β)}1{∆t(
←

ybt
t ) > 0}∆t(ybt�1

t�1 )
�

+ 1{bt ∈ Bδ=2(β)}1{∆t(
←

ybt
t ) ≤ 0}∆t(ybt�1

t�1 )
+
:

Combining the preceding lemma with the following 
lemma yields Theorem 2.

Lemma 8. The approximate period t myopic regret under 
Algorithm 3 is O(1=t) +O(1=(n� t)) in expectation: There 
exists C > 0 such that E(rt) ≤ C=t+C=(n� t), for all n ∈
N and t ≤ n.

This lemma is the same as Lemma 5, except now 
both the O(1=

ffiffi
t
√
) errors between ybt

t and ybt
∞ and the 

O(1=
ffiffiffiffiffiffiffiffiffiffi
n� t
√

) errors between 
←

ybt
t and ybt

∞ contribute to 
your regret.

4.5. Lower Bound with Known Distribution
We will now prove Theorem 3. To reiterate, the results 
of Section 3.3 do not make this analysis redundant: 
Whereas we previously established Ω(log n) regret for 
one specific OLP—the multisecretary problem—we 
now establish Ω(log n) regret for all OLPs. In other 
words, Section 3.3 illustrates that the expected regret 
can grow like Ω(log n), and this section proves that it 

must grow like Ω(log n) (see the discussion at the end of 
Section 4.1).

We will establish a universal Ω(log n) regret rate 
by retooling the methodology developed in Section 4.3
for a lower bound. For example, the lower-bounding 
decomposition will depend on ∆t(y

ψ
bt
t (0)

t�1 )
� and ∆t(y

ψ
bt
t (at)

t�1 )
+

(as opposed to ∆t(y
ψ

bt
t (at)

t�1 )
� and ∆t(y

ψ
bt
t (0)

t�1 )
+); the lower- 

bounding version of Lemma 3 will ensure the proximity 
of bt and β�under the optimal algorithm (as opposed to 
Algorithm 2); and the lower-bounding version of Lemma 
5 will establish that the expected myopic regret is Ω(1=t)
(as opposed to O(1=t)).

In this section, {bt}
1
t�n will characterize the inventory 

levels that correspond to the optimal actions specified 
in Line (14):

bn � β

and bt�1 � ψ
bt
t (π

bt
t at): (32) 

Unfortunately, we now have little control over {bt}
1
t�n, 

because the optimal policy is unknown. Nevertheless, we 
can still situate bt near β�for a substantial time interval.

Lemma 9. The inventory vector tends to lie near β�under 
the optimal policy for most of the second half of the horizon: 
For all δ > 0, if n is sufficiently large then n3=4 ≤ t ≤ n=2 
implies Pr(bt ∉ Bδ=2(β)) ≤ n�1=2.

This lemma was the hardest result in this article to prove 
because the optimal policy is opaque. Generalizing the 
technique developed in Section 3.3, I argue that the regret 
incurred when bt strays from β�is at least as large as the 
value sacrificed when we chop the linear program into 
two separate problems: one with horizon t and endow-
ment tbt and the other with horizon n � t and endowment 
nβ� tbt. The concavity of Vb

t in b ensures that this division 
is costly when bt meaningfully differs from β.

As before, we will benchmark against the offline lin-
ear program, Line (18), rather than the offline integer 
program, Line (16). The following result will enable us 
to do so:

E(R̂n) � E(Rn) +O(1),

where R̂t ≡ Vbt
t � vbt

t : (33) 
The first line holds because the linear program has a 
solution that partially satisfies at most m customers, 
and thus the integer program must derive at least as 
much value from resource endowment β�as the linear 
program does from resource endowment β�mα=n: 
Vβn ≥ Vβ�mα=n

n . Because the shadow price decreases in 
the inventory level, this implies that Vβn ≥ Vβn�
mα′yβ�mα=n

n , and hence that Rn ≥ Vβn � vβn �mα′yβ�mα=n
n . 

Finally, Proposition 4 indicates that E(yβ�mα=n
n ) �O(1)

as n→∞, which establishes the result.
As before, I will now bound the benchmark regret 

with a sum of myopic regrets.
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Lemma 10. The benchmark regret under the optimal algo-
rithm can be lower bounded by a sum of approximate myo-
pic regrets: there exists sufficiently small δ > 0 such that

R̂n ≥
Xn

t�⌈2‖α‖=δ⌉
rt,

where rt ≡ 1{bt ∈ Bδ=2(β)}(π
bt
t ∆t(y

ψ
bt
t (0)

t�1 )
�

+ (1�πbt
t )∆t(y

ψ
bt
t (at)

t�1 )
+
):

Combining the preceding lemma with the following 
lemma yields Theorem 3.

Lemma 11. The approximate period t myopic regret under 
the optimal algorithm is Ω(1=t) in expectation for most 
of the second half of the horizon: There exists C > 0 such 
that E(rt) ≥ C=t, for all sufficiently large t that satisfies 
n3=4 ≤ t ≤ n=2.

To establish this last result, I show that if bt ∈ Bδ=2 
(β)—which happens with high probability, by Lemma 
9—then 

ffiffi
t
√
(ybt

t � ybt
∞) could be near any γ ∈Rm. Accord-

ingly, both type I errors—rejecting customers that you 
should have satisfied—and type II errors—satisfying 
customers that you should have rejected—are unavoid-
able because the shadow price can always be larger or 
smaller than anticipated. Specifically, I show that there 
is at least a Ω(1=

ffiffi
t
√
) chance that both the expected type 

I and type II errors are Ω(1=
ffiffi
t
√
).

5. Conclusion
I have already said everything I want to, so I will use 
this space to recapitulate this work’s primary 
contributions. 
• I develop a new methodology for regulating the 

dual variables of an online linear program: use the con-
vexity of the dual problem to bound the shadow prices 
in terms of the subgradient of the dual value function 
and then bound this subgradient by casting it as an 
empirical process (for which there are many estab-
lished results). The technique is versatile —I used it 
five different times: 

1. In the proof of Proposition 3, I implicitly use 
the technique as I leverage an M-estimator result 
that establishes the asymptotic normality of the 
dual solution by casting the random dual objective 
function as an empirical process.

2. In the proof of Proposition 4, I bound 1{yb
t ∉ 

Bɛ(yb
∞)}‖yb

t � yb
∞‖

2 with a fixed multiple of ‖Λ̇b
t ((yb

t 

+ yb
∞)=2)� Λ̇b

∞((yb
t + yb

∞)=2)‖2, which I bound with 
supy∈Bɛ(yb

∞)
‖Λ̇

b
t (y)� Λ̇

b
∞(y)‖

2, which in turn I bound 
with an empirical processes result.

3. In the proof of Proposition 6, I bound the 
probability that supb∈Bδ(β)‖y

b
t � yb

∞‖ is large with 
the probability that supb∈Bδ(β)‖Λ̇

b
t (yb
∞ + ηkωb

j )�

Λ̇
b
∞(yb

∞ + ηkωb
j )‖ is large, which I bound with the 

probability that supy∈Bν(y
β
∞)
‖Λ̇
β
t (y)� Λ̇

β
∞(y)‖ is large, 

which in turn I bound with an empirical processes 
result.

4. In the lemma that proves Proposition 5, I 
lower bound the probability that supb∈Bδ(β)‖

ffiffi
t
√
(yb

t 
�yb
∞)� γ‖ is small with the probability that 

supb∈Bδ(β)‖
ffiffi
t
√
(Λ̇
β
t (yb
∞ + (γ+ ηkωb

j )=
ffiffi
t
√
)� Λ̇

β
∞(yb

∞ + (γ+

ηkωb
j )=

ffiffi
t
√
)) + Λ̈∞(y

β
∞)γ‖ is small, which I bound 

with the expected value of supy∈Bν(y
β
∞)
‖Λ̇
β
t (y)�

Λ̇
β
∞(y)� (Λ̇

β
t (y
β
∞)� Λ̇

β
∞(y

β
∞))‖

2, which in turn I 
bound with an empirical processes result.

5. In the proof of Lemma 9, I lower bound the 
cost of an additional restriction that mandates 
bt � β+ ξ, with |Λβt (y

β
n)�Λ

β
∞(y

β
n)�Λ

β+ζ
t (y

β+ζ
t ) +Λ

β+ζ
∞

(yβ+ζt ) | , which I bound with supy, y∈Ω |Λ
b
t (y)�Λ

b
∞(y)

�Λb
t (y) +Λ

b
∞(y) | , which in turn I bound with an 

empirical processes result.
• I use my new empirical processes methodology to 

precisely characterize the convergence of dual variable 
yb

t to its deterministic limit, yb
∞. Specifically, I show that 

under weak conditions 
1. 

ffiffi
t
√
(yb

t � yb
∞) converges to a multivariate nor-

mal for all b ∈ Bδ(β),
2. E(supb∈Bδ(β)1{y

b
t ∉ Bɛ(yb

∞)}‖yb
t � yb

∞‖
p
) falls expo-

nentially fast in t for all p ≥ 0,
3. E(infb∈Bδ(β)‖yb

t � yb
∞‖

2
) �Ω(1=t), and

4. E(supb∈Bδ(β)‖y
b
t � yb

∞‖
2
) �O(1=t).

I cannot find any direct antecedents for the first three 
results in the literature, but the fourth one is a strength-
ened version of the finding of Li and Ye (2022) that 
E(‖yb

t � yb
∞‖

2
) �O((log log t)=t). In addition to remov-

ing the log log t wiggle room, my bound also holds 
uniformly across b ∈ Bδ(β). Crucially, I position the 
supb∈Bδ(β) inside the expectation, which makes the 
result especially strong. For example, I would not have 
been able to accommodate online learning had the E 
and supb∈Bδ(β) operators been commuted. Precisely, if 
the supremum preceded the expectation, then I could 
have controlled the variance of look-back shadow price 

←

yb
t for any fixed resource vector b, but I could not have 

done so for the realized bt, as this random variable cor-
relates with the random mapping b ⊢→

←

yb
t .

• I broaden the applicability of the compensated 
coupling scheme of Vera and Banerjee (2019) by devis-
ing new bounds on the trajectory of the inventory ran-
dom walk, {bt}

1
t�n. My delicate assumptions hold only 

in the δ-ball around β, so I cannot bound the regret 
without first proving that bt resides in Bδ(β), with high 
probability. For the upper bound with known demand 
distribution, I show that following the certainty- 
equivalent principle—that is, estimating the unobserved 
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shadow price, ybt
t , with its fluid approximation, 

ybt
∞—constrains bt to Bδ(β) for all but last O(1) periods. 

For the upper bound with unknown demand distribu-
tion, I inductively prove that the error introduced by 
replacing deterministic shadow price estimate ybt

∞ with 
stochastic shadow price estimate 

←

ybt
t falls fast enough to 

ensure an orderly {bt}
1
t�n walk. Finally, for the lower 

bound, I argue that the regret conditional on bt ∉ Bδ(β)
must be at least as high as the cost of a bt ∉ Bδ(β) con-
straint imposed on the offline problem. I then lower 
bound the cost of this constraint to upper bound the 
probability that bt ∉ Bδ(β) under the optimal policy.
• I use my new control over shadow prices and 

inventory levels to extend O(log n) and Ω(log n) regret 
bounds of Lueker (1998) to a multiresource setting. 
Rather than use Lueker’s approach, I performed this gen-

eralization with compensated coupling, as bounding the 
value function across its entire domain would have been 
infeasible in higher dimensions (at least for me).
• I tighten the regret bound of Li and Ye (2022) for 

the online linear program (OLP) with online learning 
from O(log n log logn) to O(log n), and I provide a cor-
responding Ω(logn) lower bound. Hence, I show that 
incorporating online learning—that is, the dynamic 
estimation of µ, the joint distribution of utility ut, and 
resource consumption at—does not position a revenue 
management problem in a new difficulty class.
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Appendix 
Table A.1. List of Symbols

Symbol Definition Reference

[x] The set {1, : : : , x}
x ∧ y Vector with ith element min(xi, yi)

x ∨ y Vector with ith element is max(xi, yi)

x+ max(0, x)
x– max(0, �x)
ej Unit vector indicating jth position
ι Vector of ones
1{} Indicator function
Bδ(b) Open ball with radius δ�about b
m Number of resources to manage
n Number of time periods
t Generic time period
b Generic inventory vector, defined as total holdings divided by total time
bt Period-t inventory vector associated with given algorithm Algorithms 2 and 3 and line (32)
β Initial inventory vector
τ(δ) First time inventory vector leaves Bδ(β) Line (26)
ut Utility received by satisfying period-t customer
at Resources consumed by satisfying period-t customer
∆t Surplus utility function Line (21)
µ Joint distribution of (ut, at) Assumption 1
α Upper bound on at Assumption 4
xt Period-t decision variable
ψb

t Function determining period-(t� 1) inventory vector Line (13)
πb

t Optimal action Line (14)
vb

t Online objective value Line (15)
v̂t Objective value associated with given algorithm Lines (28) and (31)
Vb

t Offline objective value Line (16)
Vb

t Offline objective value with linear programming relaxation Line (18)
Rn Regret Line (17)
R̂t Benchmark regret associated with given algorithm Lines (27), (30), and (33)
rt Approximate myopic regret associated with given algorithm Lemmas 4, 7, and 10
Λb

t Dual objective Line (20)
←
Λb

t Look-back dual objective Line (29)
Λ̇t Dual objective subgradient Line (25)
Λb
∞ Limiting dual objective Line (23)
Λ̇∞ Limiting dual gradient Line (24)
Λ̈∞ Limiting dual Hessian Lemma 1
ωb

i ith orthonormal eigenvector of limiting dual Hessian After Lemma 2
σb

i ith largest eigenvalue of limiting dual Hessian After Lemma 2
yb

t Dual optimal solution Line (22)

←

yb
t Look-back dual optimal solution Before line (29)

yb
∞ Limiting dual optimal solution Assumption 5 and Lemma 2

y Generic dual solution
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Endnotes
1 Switching from finite to continuous secretary valuations 
completely changes the mechanics of the model. With finite valua-
tions, the probability of making a period t hiring mistake decreases 
exponentially in t, whereas the expected cost of such a mistake 
remains constant. Hence the total regret grows with n like 
Pn

t�1 exp(�t) �Θ(1). With continuous valuations, however, the 
probability of making a period t hiring mistake and the expected 
cost of such a mistake both decrease like 1=

ffiffi
t
√

. Hence, the total cost 
grows with n like 

Pn
t�1(1=

ffiffi
t
√
) · (1=

ffiffi
t
√
) �Θ(logn).

2 To see that the expected regret with nβ�initial open slots equals 
that with n(1� β) initial open slots, we can re-express the problem 
of maximizing the capability of each of the nβ�applicants you hire to 
maximizing one minus the capability of the n(1� β) applicants you 
reject. However, one minus a uniform is also a uniform, so this 
mirror-image problem must yield mirror-image regrets.
3 I make three minor changes to the online linear programming 
model: I impose additional nonnegativity constraints, u1, a1 ≥ 0, I 
do not include constraints that are slack in the limit, and I use a 
cleaner version of the continuous value assumption, which I 
inherited from Lueker (1998). The first two modifications are triv-
ial: Accommodating negative u1 and a1 would be simple because 
all that matters is the difference, ∆1(y) � u1 � a′1y. A simple concen-
tration of measure argument establishes that a constraint that does 
not bind in the limit has only a O(1) effect on the expected regret 
because the probability of it binding decreases exponentially fast in 
n. (I incorporated constraints that are slack in the limit in a previous 
version of the manuscript.) However, the third change is noteworthy 
because Assumption 6 is more straightforward and flexible. For 
example, this assumption permits unbounded shadow prices and 
hence unbounded utilities, and it extends the model to cover the 
specification of Arlotto and Xie (2020).
4 After I posted the result, Jiang et al. (2024) independently devel-
oped a slightly weaker version of Proposition 4.
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